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1 Introduction

During the normal course of high energy storage ring operations, it is customary for
blocks of time to be allotted to something called “machine studies,” or more simply, just “stud-
ies.” It is during these periods of time that observations and measurement of accelerator behavior
are actually performed.  Almost invariably these studies are performed in support of normal ma-
chine operations.  The machine physicist is either attempting to improve machine performance,
or more often trying to recover previously attained “good” operation, for example after an ex-
tended machine down period.  For the latter activity, a good portion of machine studies time is
usually devoted to “beam tuning” activities: those standard measurements and adjustments re-
quired to recover good operations.

Before continuing, please note that this paper is not intended to be comprehensive.  It is
intended solely to reflect one accelerator physicist’s impressions as to what goes on in an accel-



erator control room.  Many topics are discussed, some in more detail than others, and it is not the
intention that the techniques described herein be applied verbatim to any existing accelerator.  It
is hoped, however, that by reading through the various sections, scientists, including accelerator
physicists, engineers, and accelerator beam users, will come to appreciate the types of operations
that are required to make an accelerator work.

A second caveat is that the author is a shameless advocate of electron and positron ma-
chines, and synchrotron radiation sources in particular.  Concepts such as transition energy, emit-
tance dilution, and stochastic cooling, and devices such as Schottky pickups and flying wires are
not discussed.

2 Orbit Measurement and Correction

2.1  Beam Position Monitoring Systems

The purpose of a beam position monitoring (BPM) system is to measure the transverse
(x,y) coordinates of the beam centroid at a fixed number of locations along the storage ring’s cir-
cumference.  The set of numbers resulting from such a measurement is stored in a computer file,
and is commonly referred to as an orbit.

2.1.1  BPM Sensors

To measure beam position, sensors or pickup electrodes (PUE’s) of some type are re-
quired.  There are two standard PUE types: capacitive button pickups, or stripline pickups.  A
button pickup consists of a metal disc (button) mounted on the end of a coaxial vacuum electrical
feedthrough’s center conductor.  The button is usually located tangent to the inner surface of the
storage ring vacuum chamber.  A coaxial cable is attached to the vacuum feedthrough, and routes
the button signal to the BPM processing electronics.

A stripline pickup (ref 1) consists of a metal strip running parallel to the beam motion
inside the vacuum chamber and attached at one or both ends to the center conductor of a vacuum
electrical feedthrough.  The vacuum chamber forms a ground surface, so that the metal strip/vac-
uum chamber represents an electrical transmission line, usually with a characteristic impedance
of 50 ohms.  Stripline pickups have the property of being directional.  They can be used to dis-
tinguish between positive and negative counter–rotating bunches in colliding–beam machines,
with the signal from one beam appearing at one end of the stripline, and the counter–rotating
beam’s signal appearing at the other.  The coaxial cables used to capture the signals must have
the same characteristic impedance as the stripline, which is why 50 ohms is usually chosen.

Stripline electrodes are also commonly used as rf kickers.  Pairs of electrodes driven in
differential mode are used as transverse kickers and if driven using common mode, can be used
as longitudinal kickers.  A stripline pickup or kicker is commonly referred to as a “quarter–
wave” stripline.  This is because the narrow band coupling to the beam is maximum when the
length of the stripline is equal to one quarter of a wavelength at the frequency of interest.  For
example, a quarter–wave stripline electrode to be used near 350 MHz (λ  � 80 cm) would work
best with 20–cm–long electrode plates.

The intensity of signals induced on button or stripline pickups is roughly proportional to
the transverse angle subtended, as seen by the beam.

Both button and stripline pickups are in principal broad–band devices.  Button feed-
throughs with good response to 12 GHz are commercially available, and stripline–type pickups



with good response up to several GHz have been constructed. (ref 2,3) The signal induced on a
button pickup is roughly proportional to the derivative of the bunch charge distribution ρ, i.e.,

V �

d
dt

ρ (s–�ct).
[1]

Stripline pickups, on the other hand, produce a voltage proportional to the difference

ρ(s–�ct) � ρ�s–�c�t–2L
c �� [2]

where L is the stripline length.  Note that the button signal is similar to that for a very short strip-
line.

2.1.2  BPM Signal Processing

At each BPM station around the circumference are located two or four pickup electrodes.
A two–electrode arrangement can be used to measure either  vertical or horizontal position by
taking differences of button signals; top minus bottom or inside minus outside, respectively.  A
four–electrode arrangement can he used to measure both vertical and horizontal position simulta-
neously.  Rather than position the four electrodes at top, bottom, inside, and outside, it is com-
mon to place the four electrodes in a rectangular arrangement; (Fig. 1) top inside, top outside,
bottom inside, and bottom outside.  With the button voltages from these four buttons defined as
A,B,C, and D respectively, the vertical position will be proportional to A+B–C–D, while the hor-
izontal position will be proportional to A–B+C–D.  This configuration has the advantage that
none of the buttons are heated by synchrotron radiation, in electron or positron machines, and the
electrodes are generally closer to the beam for elliptical or rectangular vacuum chambers, im-
proving sensitivity.
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Figure 1  Pickup Electrode Arrangements

In most position monitoring systems, the difference signals are normalized either by di-
viding by the sum in software or by using a hardware normalization scheme, e.g., AM/PM con-
version or log ratio processing. (ref 4, 5)

Due to the size of most high energy storage rings, there are always a large number of
PUE signals to be processed.  Because of this, many BPM systems employ some form of multi-
plexing.  In the most extreme case, a network of coaxial rf switches is arranged so that every
pickup signal can be sequentially connected to a common signal detector.  The procedure of



“taking an outbit” reduces to a problem of exercising all of the switches in the most efficient
manner.

This kind of multiplexed BPM system has the great advantage of low cost.  Total cable
length is kept to a minimum and only a single, high quality detector is required plus some finite
number of high quality rf switches.. The rf switches and their associated control electronics  are
in fact where the bulk of the money is spent.  Another advantage of this type of system is that no
detector matching is necessary, since all signals are measured by the same unit.  It is important,
however, that certain rf switching paths be made identical.

The primary disadvantage of a multiplexed system is its speed.  It is not uncommon to
spend several minutes of valuable machine study time waiting for an orbit measurement to be
completed.  If a lot of orbit work is required, a shift gets rapidly used up.  In addition, it is im-
possible to observe real–time orbit motion, i.e., beam motions occurring more rapidly than a drift
with several–minute time scale.

The other extreme of PUE networking is full blown parallel processing.  The trend these
days seems to be moving toward real–time (even turn–by–turn) orbit measurement.  To do this,
each BPM station (comprised of four PUE’s) must have its own dedicated processing electronics.
Examples are the switched receivers with AGC used at Brookhaven’s National Synchrotron
Light Source (ref 6)  and ESRF at Grenoble, France. (ref 7)  Log–ratio processing (ref 5) and
AM/PM conversion (ref 4) are also examples of technologies that can be used in a parallel pro-
cessing scheme.

In addition to heterodyne receivers, AM/PM converters, and log–ratio processing, a
fourth option is stretcher or peak detector.  Diode–based detectors have been reliably used both
in multiplexed systems and for dedicated real–time processing at Cornell and Stanford. (ref 8)
Diode detectors commonly use amplifiers and switchable attenuators to extend their dynamic
range, contributing their own set of problems.

It is not uncommon for BPM networks to be a “compromise” system.  At Cornell, for ex-
ample, the ring is broken up into a number of sectors, with each sector having its own multi-
plexed processor.

Important features of any BPM system are its dynamic range (both position and intensi-
ty), resolution, and accuracy.  It is common for most BPM systems to have a dynamic range in
intensity near 40 dB, otherwise known as a factor of 100.  For position measurement, a typical
dynamic range is +/–20 mm, selected to be some reasonable fraction of the usable vacuum
chamber aperture.  The resolution of a BPM system is a measure of the smallest resolvable beam
motion that can be detected.  The accuracy relates to error between the measured beam position
and the true beam position relative to an absolute position reference such as a survey monument
or the magnetic centerline of a nearby quadrupole.  The accuracy (e.g., in microns) is always
greater than or equal to the resolution.  Modern accelerator BPM systems have resolutions ap-
proaching 5 to 10 microns and accuracies better than 150 microns.

2.2 Orbit Correction

2.2.1 Reference Orbit Determination

One of the most common procedures performed in a high energy accelerator control
room is orbit correction, or flattening.  Shortly after commissioning an accelerator, a “reference



orbit” is established.  This reference orbit is simply a set of BPM readings deemed desirable for
various reasons.  Usually, the reference orbit is believed to be the orbit that agrees most closely
with the magnetic centerlines of the storage ring quadrupoles and sextupoles, thus yielding the
most linear optics.  This is commonly the case in high energy colliders.  For a synchrotron radi-
ation source, on the other hand, the reference orbit is usually the orbit where all operational pho-
ton beamlines are adequately illuminated.  Ideally, this orbit passes close to the quadrupole and
sextupole magnetic centerlines, as in HEP machines.  Determination of the reference orbit can be
quite involved, and typically must be repeated many times over the life of an accelerator, simply
because things move.

The magnetic centerline of a quadrupole can be found using the beam, by taking advan-
tage of the fact that a quadrupole will not steer unless the beam is off center.  The technique re-
quires that a BPM be located adjacent to the quad in question, and that the quad be independent-
ly controllable (as compared to a string of quads wired in series).  In addition, at least one other
BPM elsewhere in the ring is required, if not a complete orbit.  If a single BPM is used, it should
be placed an appropriate fraction of betatron wavelengths from the quad in question and it, as
well as its associated electronics, must be reliable.  Finally, a means of moving the beam at the
quad with high resolution is needed.  This can be done using a local bump (see Section 2.2.3). A
global orbit distortion can be used, but is less desirable.

Suppose the magnetic centerline of quad Ql is to be determined in the vertical plane.  De-
fine the vertical position of the beam as measured by the BPM adjacent to Ql to be Yl, and the
vertical position at some other location in the ring to be Y2.  Suppose further that a local close-
dorbit distortion (local bump) exists, comprised of at least three steering elements with appropri-
ate weights, simultaneously variable, implemented by using a computer–read software “knob,”
for example.  The bump is used to vary Yl and the quadrupole power supply varies Y2, unless of
course the position Yl corresponds to the magnetic centerline of Ql. This is in fact the purpose of
the measurement:  to find the value of Yl where Y2 is independent of the strength of Ql.  It is
crucial that Y2 have a betatron phase such that the orbit distortion caused by Ql be large at the
azimuth (s–value) of Y2, i.e., Y2 cannot be at a node.

This measurement can be made in a stepwise fashion, e.g., vary the bump, measure Yl,
move Ql plus and minus and find the change in Y2, then repeat for a new Yl.  A plot of
∆Y2/∆Q1 vs.  Yl will intersect the Yl axis at a value of Yl corresponding to the magnetic center-
line of Ql.  This whole procedure must be repeated for all the quads in the ring, thus establishing
the reference orbit described earlier.  Obviously, the value of computer automated measurement
cannot be emphasized enough.  A technique similar to this is used at Cornell to determine mag-
netic centerlines with an accuracy of +/–100 microns. (ref 8)

At Brookhaven’s NSLS x–ray ring, a two–dimensional mapping procedure  is used to de-
termine the vertical reference orbit.  Two vertical steering corrector magnets located an odd
number of betatron quarter wavelengths apart are chosen, call them Cl and C2.  A grid is set up,
with Cl values plotted orthogonal to C2 values, and a total of about half a dozen values are se-
lected for each corrector.  For each of the 36 points on the grid, orbits are measured and photon
observations are made at all operational photon beam lines.  Each beamline reports back those
grid values where a reasonable amount of illumination is observed.  Since each beamline is ob-
serving photons from a single bending magnet, BPM readings upstream and downstream of that
dipole corresponding to the best illumination are the values to be used for the reference orbit.



Compiling all the information from the beamlines produces a complete reference orbit for the
vertical plane. (Many synchrotron radiation users are relatively insensitive to horizontal orbit.)

2.2.2 Global Orbit Correction

Once a reference orbit has been established and stored in a computer file, orbit correc-
tions can be made.  There are probably as many orbit correction algorithms as there are accelera-
tors, but every scheme uses some sort of response matrix.  The most brute force form of response
matrix Mij  might be defined to be the number of millimeters of motion at BPM number i caused
by a 1–ampere change in current through steering corrector coil j. If the numbers of BPMs and
correctors are equal, then a desired beam motion represented by a vector Xi can be uniquely ac-
complished by using a set of steering corrector current changes represented by a vector Cj =
MijXi.  The response matrix is determined empirically or semi–empirically, since calculated beta
functions and phases very rarely agree with those actually observed (see Section 6.3).

The variety in orbit correction schemes derives from the fact that the numbers of moni-
tors and correctors are by and large not equal and that other constraints need to be imposed.
Steering corrector magnet power supplies are limited in the amount of current they can supply
and this must be taken into consideration during orbit correction.  In addition, steering correctors
can be used to make small changes in the machine’s dispersion function, making dispersion
correction possible.

Orbit correction is an iterative procedure.  Depending on the amplitude of the orbit
change, it may take several “corrections” to achieve the desired result because of inherent non-
linearities of the accelerator lattice and BPM’s and inaccuracies in the lattice model (i.e., the
Mij ’s).

2.2.3 Local Orbit Correction

What has just been described could be called “global orbit correction.” It is often desir-
able to make a local correction encompassing only a small fraction of the ring’s circumference,
for example to align a single synchrotron radiation beamline.  To accomplish this, various com-
binations of three–element bumps are used.  A bump is a closed–orbit distortion resulting from
simultaneously changing three or more steering correctors.  The simplest three–element bump
consists of three equally spaced corrector magnets with no focusing or nonlinear elements be-
tween.  If the three correctors steer through angles �, −2�, �, a simple triangular orbit distortion
is set up.  In general, the ratios of steering corrector strengths needed for three–element bump
closure, otherwise known as “bump coefficients,” are given by the law of sines as follows:

�x�1 �1�

sin �23
�

�x�2 �2�

sin �31
�

�x�3 �3�

sin �12 [3]

where the ∆x�i are the deflection angles caused by the three correctors, the βi are their corre-
sponding beta function values, and �ij  is the betatron phase advance between correctors i and j.
(ref 9)

The coefficients resulting from these formulae give a good starting point for an empirical
determination.  At Brookhaven’s National Synchrotron Light Source, the following procedure is
used to establish bump closure. (ref 10) After selecting the three corrector magnets, two BPMfs
located outside the bump are chosen, with some odd multiple of 90 degrees of betatron phase



between them. A 3x2 transfer matrix is then measured, giving the amount of position change
caused at the two BPM’s by each of the three correctors.  From this, first–order bump coeffi-
cients are extracted by requiring zero motion at the two BPM’s when moving the three corrector
magnets simultaneously.  Larger and larger amplitude bumps are implemented, each time mak-
ing small corrections to the bump coefficients in order to minimize motion at the two BPM’s.
The result is a three–element bump that does not affect the beam at the two external BPM’s,
which is equivalent to bump closure.

Superposition of two three–element bumps having two correctors in common yields a
four–element bump.  Considering two simple triangle bumps as described above, it is easy to see
how four–element “angle” and “parallel translation” bumps can be formed simply by the sub-
traction or addition of corrector weights from two three–element bumps.  The “angle” and “par-
allel translation” refer to the midpoint  of the four correctors.  These types of four–element
bumps are quite useful for aligning synchrotron radiation insertion device beamlines, where the
radiation source typically is located in the center of a long symmetric straight section of the ring.

3 Betatron Tune Measurement

3.1  Preliminary

A time–dependent deflection can be used to measure the vertical and horizontal tunes.
Recall that the tune is defined to be the number of betatron oscillations executed by an off–axis
particle in traveling one turn around the storage ring.

Consider a time–dependent steering element, such as a stripline kicker, varying as
cos(ωt).  The equation of motion for transverse position of a bunch can be written as:

d2�

d�2
� �2� � �c� �x	 


�

n�–�

�(�–2�n)cosn�T0
[4]

where  is the Courant–Snyder variable x� �� , φ is the betatron phase divided by ν,ν is the tune,
and To is the revolution period.  The quantity βc is the value of the beta function at the kicker,
and ∆x	 is the maximum deflection angle achieved during one cycle, in radians.  The kicker is
assumed to have zero length, so that its effect on the beam is that of an impulse.  Damping is ig-
nored for the present.

The above equation is not too hard to solve using Fourier transforms and a few δ function
identities.  The result is

�(�) �
�c� �x	

2�



�

m�–�

cos ���o
� m��

�
�
�o

� m�
2
–�2

,

[5]

using ωo = 2π/To.

This equation exhibits the phenomenon of resonance, which is not surprising since all we
do is excite a harmonic oscillator (the beam) with a sinusoidal drive (the stripline).  Because we
use an impulse at a fixed azimuth in the ring, a multitude of resonances are excited.  The loca-
tions of these resonances can be found by setting the denominator to zero:

� � m�o � ��o. [6]



This equations clearly shows what are commonly called “betatron sidebands” living
above and below each harmonic of the fundamental.

The equation for χ(φ) is not the end of the story, however, since it does not include a de-
scription of the beam’s bunch structure.  If one were actually to look at the signal from a single
BPM button pickup, for example, one would see a voltage resembling the following, assuming
zero bunch length:

V(t) � const. d
dt




�

m�–�




B–1

n�0

In ��t–mTo–nTo�B	

[7]

where m labels the turn number, n is the bunch index, In is the bunch current, and B is the total
number of bunches.  Fourier transforming the above expression gives some idea of what you
would see if you hooked up the output of the button to the input of a spectrum analyzer:

V(�) � const.� � � 


�

m�–�

���–2m�
To
	 


B–1

n�o

Inein�To�B.

[8]

The expression clearly shows the harmonics of the revolution frequency, as well as the
effect of bunch–filling patterns.  As an example, observe what happens when a two–bunch pat-
tern (B=2) is used with equal current in each bunch.  The sum over n becomes




n

In ein�To�B
� 1� ei�To�2.

[9]

Note how this expression vanishes for ω T = (2k+1)π.  In other words, all odd rotation
harmonics drop out for two equally spaced bunches.  Similarly, if one were to fill every rf bucket
equally, i.e., B = h, where h is the harmonic number, one would discover that all harmonics drop
out except multiples of the rf frequency (proof of this is left as an exercise).;

A real–time difference of two button signals (say top and bottom) would have all of the
spectral characteristics of the bunch structure, in addition to the betatron sidebands caused by the
time–dependent kicker.  One typically sees enormous spectral lines at revolution harmonics, and
the kicker strength must be turned up enough to bring the betatron sidebands up above the noise
threshold of the system.  A measurement of the frequency of these sidebands yields the fractional
part of the tune according to

� � ����o [10]

where ∆ω is the distance from a sideband to the nearest (ν<1/2) or second–nearest (ν>1/2) har-
monic of the revolution frequency ωo.  The ambiguity ν<1/2 or ν>1/2 can be resolved by chang-
ing quadrupole strengths and paying close attention to the sign of the resulting change in tune.
For example, increasing a horizontally focusing quad (QF) or string of quads is known to in-
crease the horizontal tune.  In this situation, the horizontal betatron sidebands will move outward
from their associated revolution harmonic, i.e., νH must increase.  A similar procedure can be
used vertically.  The only fly in the ointment is when the machine is fully coupled and both hori-
zontal and vertical sidebands νH and νv appear in equal strengths, regardless of which plane is
being driven.  For this, one can use the fact that the horizontal tune moves up more than the ver-
tical tune moves down when the horizontal focusing is increased.  More commonly, a software



knob is used to vary focusing and defocusing quads QF and QD simultaneously so that the hori-
zontal and vertical tunes can be varied independently in an orthogonal manner.

If the integer part of the tune is desired, it can be found by observing the orbit distortion
caused by changing a single steering corrector and counting the number of oscillations.

3.2  Betatron Tune Measurement Instrumentation

To measure the tune, a transverse drive system, a real–time beam position sensor, and a
device for measuring transfer function are required.  The drive system consists of a drive ele-
ment and an amplifier.  If striplines are used, the system will operate at rf frequencies up to
approximately 500 MHz.  The stripline drive is usually designed to work best at frequencies near
the machine’s rf frequency, i.e., its length is one–fourth of an rf wavelength.  It is not necessary
to use such high frequencies, however, since all revolution harmonics have associated sidebands.
A system operating near low harmonics of the revolution frequency (up to a few MHz) can be
designed relatively inexpensively.  Instead of a stripline kicker, a fast “shaker” magnet using fer-
rites in conjunction with a ceramic vacuum chamber section can be used.

The real–time beam position sensor can take the form of one of the standard BPM system
detectors, assuming it has enough bandwidth, or a dedicated stripline pickup/rf hybrid combina-
tion can be used.  The hybrid is used to take a real–time difference of two stripline signals (e.g.,
top – bottom).  These hybrids can be quite broadband, using ferrites in a difference transformer
up to a few hundred MHz, or octave bandwidth devices using stripline technology are common
(e. g. , rat–race hybrids) . For the purposes of tune measurement, normalization of the difference
signal is unnecessary.

The beam position sensor used at KEK’s Photon Factory in Tsukuba, Japan for tune mea-
surement is an x–ray beam position monitor sensing synchrotron radiation photons. (ref 11) The
popularity of synchrotron light sources has resulted in a variety of different designs for photon
BPM’s.  Because of the long source–to–monitor lever arm, photon BPM’s are highly sensitive to
angular electron or positron beam motions; therefore a much smaller drive amplitude is required
for a tune measurement than for rf BPM’s.

The device for measuring transfer function can be an in–house design, but many such de-
vices are available commercially.  Quite common is a spectrum analyzer/tracking generator com-
bination.  The tracking generator output drives the power amplifier/stripline kicker input, while
the beam position signal is sensed by the spectrum analyzer.  This type of device can be found
for either low frequency or rf.  Also popular are rf network analyzers which can be used with an
S–parameter test set to measure S21 (forward transmission coefficient) of the network comprised
of drive system, beam, and position sensor.  All such transfer function devices measure the ratio
of beam position to drive voltage in one form or another.

A “tune measurement system” is actually two systems, one for each transverse plane.
Ideally, these systems are dedicated and are conveniently interfaced to the accelerator control
system computer.

4 Synchrotron Tune Measurement

The previous discussion assumed that the period of revolution of the beam centroid is a
constant.  In many machines, the beam spontaneously undergoes small phase oscillations known
as synchrotron oscillations, so that the signal observed on a button pickup takes the following
form for single–bunch operation:



V(t) � const. d
dt

�

�

m�–�

�(t–mTo–�cos�st)
[11]

where ωs is the angular frequency of synchrotron oscillations and τ the amplitude in seconds.
The synchrotron tune is defined to be the ratio of the synchrotron frequency to the revolution fre-
quency, and it is usually quite small.  Typically the synchrotron frequency is a few kilohertz, so
that if the revolution frequency is several hundred kilohertz, νs is on the order of 0.01 or less.

If the Fourier transform of the above expression is performed (which will not be at-
tempted here), one discovers that all of the revolution harmonic spectral lines are still present,
but that in addition each line is surrounded by synchrotron sidebands.  They occur at frequencies

� � n�o � m�s. [12]

In addition, the amplitudes of the sidebands decrease as m increases, with an envelope
described by a Bessel function.

The instrumentation used for measuring synchrotron frequency is similar to that for beta-
tron tune measurement, except that quite often the synchrotron oscillations are self–excited and
can be measured using a spectrum analyzer with no drive.  In fact, it is quite common for elabo-
rate feedback systems to be constructed for the express purpose of damping the spontaneous syn-
chrotron oscillations. (ref 12) The spontaneous oscillations are driven from a number of sources
including phase noise on the accelerator’s rf system and bunch–to–bunch wakefields.

If one were interested in driving a synchrotron oscillation, it could be done by modulat-
ing the phase control voltage of the rf system’s, phase lock feedback loop, or by driving a pair of
stripline kickers in a common–mode configuration.  In some accelerators, special purpose rf ca-
vities are designed to couple to the beam more efficiently for feedback.

A major problem confronted when attempting to measure very small synchrotron oscilla-
tions is the fact that the synchrotron sidebands are so close to their associated revolution harmon-
ics, i.e., the synchrotron frequency is much less than the revolution frequency.  Because the revo-
lution harmonic lines are so huge in comparison to the synchrotron lines, a very deep and narrow
bandwidth filter is required to separate them.  This is especially important from the context of
feedback system design.  A filter for the NSLS VUV ring was constructed using a low loss trans-
mission line together with an rf hybrid. (ref 13) The signal from a stripline pickup electrode was
delayed by exactly one revolution period with the coaxial transmission line, and then subtracted
from itself one turn later using the hybrid.

Using this, a 60–dB–deep notch filter was constructed, effectively eliminating the first
revolution harmonic line from the signal.  What results is a signal representing the change from
one turn to the next, which can be put to use in a synchrotron oscillation feedback system.

5 Beam Intensity Measurement

One of the most important parameters of an accelerator is beam lifetime.  Due to finite
aperture in combination with scattering from gas molecules, nonlinear fields, and other effects,
the beam has a finite, but hopefully long lifetime.  To measure a long lifetime, a very high reso-
lution beam intensity monitor is required. (ref 14) High quality current transformers (DCCT’s),
are now commercially available, and are capable of measuring a change in current as small as 5
microamperes over a dynamic range of several hundred milliamps. (ref 15) These devices are
usually configured as a toroid of magnetic material through which the beam passes.  The beam



vacuum chamber must be broken electrically by using a ceramic insert, and the signal is detected
by using the toroid windings, along with some exotic electronics.

For a pulse measurement, a toroid produces a pulse that can be integrated for bunch
charge measurement or peak detected for bunch peak current measurement, which depends on
bunch length.  This becomes important for multibunch operation,  when it is desired to “top off”
the different bunches to carry equal charge.  Pulse measurements by nature have less resolution
than DCCT’S.

A stripline monitor can also be used for beam intensity measurement.  Running the sum
of a pair of electrodes (say top and bottom) using an rf hybrid into a spectrum analyzer, it is easy
to show that the heights of spectral lines corresponding to multiples of the rf frequency are al-
ways proportional to total beam current.  This measure of intensity is independent of beam posi-
tion between the stripline plates, to first order.  A similar measurement could be done using but-
ton pickups; however, stripline response lends itself well to narrow band measurements,
especially if the stripline length is chosen to be a quarter of an rf wavelength.

5.1   Intensity Monitor Application

A common use of pulse charge monitors is to measure injection/extraction efficiency.
High energy storage rings require elaborate injectors, sometimes involving two or three lower
energy accelerators.  During the process of injection tuning, it is helpful to know how much
charge actually gets from one accelerator to the next, and what fraction of charge going into an
accelerator eventually gets extracted for the next stage.  Here it is important to have intensity
monitors whose calibrations are closely matched.

A somewhat less common measurement involving intensity monitor is scraper–lifetime
measurement.  A scraper is simply a movable aperture that can be inserted into the accelerator
vacuum chamber with a very accurately known transverse position.  The concept is quite simple:
to obtain a plot of beam lifetime vs. scraper position.

A number of subtleties complicate matters, however.  First of all, beam lifetime depends
on vacuum and, for positron and electron accelerators, vacuum depends on beam intensity be-
cause of vacuum chamber outguessing from synchrotron radiation.  Therefore, to get a snapshot
of lifetime vs. scraper position at fixed beam current, the measurement must be performed in a
very short time.  This becomes critical when short lifetimes are being measured.  The data must
be collected before the vacuum system has a chance to recover from the higher current gas load.
Second, one would like to measure scraper position relative to the beam centroid.  Because the
beam is usually off–axis, care must be taken to very accurately determine the beam–scraper rela-
tionship.  If two opposing scrapers are available at the same location in the ring, the beam cen-
troid can be found from the two sets of scraper lifetime data.

Scraper lifetime data for electron and positron machines have three qualitatively different
regions.  When the scraper is far from the beam, it has no effect on the lifetime.  This is because
it is outside the accelerator’s acceptance: the beam halo is being clipped elsewhere in the ring,
probably at a high β point or some other limiting aperture.  The point at which the scraper enters
the beam’s halo and starts to affect lifetime is a direct measure of the acceptance.  The distance
to the beam centroid squared and divided by the value of beta at the scraper yields the accep-
tance of the machine in meter–radians.  Beyond this point, the lifetime is proportional to the ac-
ceptance, which is now determined by the scraper.  This effect can be calculated from the theory
of elastic Coulomb scattering off of residual gas molecules, which is the mechanism responsible



for the beam halo. (ref 16) Eventually, the lifetime drops like a rock.  This is the quantum life-
time regime, where the scraper begins to cut into the core of the beam itself. (ref 17)

6   Special Topics

6.1   Coupling

An  important feature of all high energy storage rings is the phenomenon of transverse
coupling.  A skew quadrupole magnet is the simplest example of this: a horizontal displacement
through such a magnet produces a vertical deflection and vice versa for a vertical displacement.
This effect is easily observable if one introduces a deflection using a horizontal steering magnet,
for instance, and then measures the resulting orbit distortion.  For an ideal machine, the horizon-
tal orbit will be affected but not the vertical.  All machines will, however, exhibit a small vertical
orbit distortion due to small imperfections in the lattice, nonlinearities, or skew quadrupole mag-
nets.

As a simple model, consider two coupled harmonic oscillators labeled x and y:

d2x
d�2

� � 2
x x � �y,

d2y
d�2

� � 2
y y � �x.

[13]

The quantities x and y could represent the transverse displacement of a beam stored in a
constant gradient machine where the focusing is evenly distributed around the circumference, κ
denotes a small coupling term, and νx and νy are the betatron tunes.  The independent variable θ
represents the azimuth of the beam around the (circular) accelerator in radians.  Substituting si-
nusoidally varying functions for x and y, one arrives at a formula for the normal–mode “frequen-
cies” ω:
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[14]

Note first that if κ is much less than |νx – νy|, the two positive roots of this equation are
very near νx and νy.  Second, note that the distance of closest approach of the two normal–mode
“frequencies” is a direct measure of the strength of the coupling.  Specifically, if νx = νy = ν,
then

�2
� �2

� �, [15]

indicating that the distance of closest approach is 2κ.

Finally note that if the tunes νx and νy are varied together with opposite sense, and if they
“cross,” then the two normal modes actually exchange identities.  This means that if one normal
mode is initially associated, say, with νx, and νx is then changed to be equal to the old νy and
vice versa, then the same normal mode will now have a frequency near the new νy.  This is per-
haps easiest to see graphically, by plotting ω  vs. νx – νy in Eq. [14).

Although derived from a very simplistic model, the previous observations are, in a nar-
row sense, true of real storage rings.  The general theory indicates that a large number of “cou-
pling resonances” are excited, and the complete solution involves summing a large number of
them. (ref 18)  One class of resonances, the difference resonances, occurs when vertical and hori-
zontal tunes differ by an integer and have the same properties as those described in the preceding
simple model.



Many storage rings are operated near a difference resonance because difference reso-
nances are usually non–destructive (generally only increasing the vertical beam size) and be-
cause many resonances in the (νx,νy) plane are destructive but are sparsely located near the dif-
ference resonances.  Because of this, and as a result of earlier observations, difference
resonances can be used to “decouple” a storage ring.

It was mentioned in an earlier section that linear combinations of quadrupole magnets
can be varied in such a way as to change the tune in one plane without affecting the other.  In a
completely analogous fashion, one can generate a software “knob” which varies the difference νx
– νy without affecting the sum, and vice versa.  Declaring the νx – νy knob to be the “delta”
knob, and having access to horizontal and vertical tune measurements one can decouple a ma-
chine using skew quadrupoles.  As few as two skew quads can be used, but it is more common to
have two families of skew quads distributed around the ring with appropriate betatron phases
separating them. (ref 19)

First, the tunes are brought together by using the delta knob.  The distance of closest ap-
proach is a measure of the coupling as described before.  Next, skew quads are varied with the
objective of achieving the minimum possible “tune split.” Note that the tune measurement sys-
tem is actually measuring the normal–mode tunes, and not νx and νy.  The procedure is iterated
until an acceptable tune split is achieved.  Finally, the tunes are pulled apart, back to their nomi-
nal values for normal operations.  Associated with this last procedure is a dramatic collapse of
the vertical beam size as viewed, for example, by a synchrotron light monitor.

Upon completion of the above procedures, the accelerator is deemed to be “globally de-
coupled,”  meaning that the accelerator as a whole is decoupled into orthogonal normal modes.
A more detailed look shows that individual sections may require “local decoupling.”   For an
overview of this procedure, the paper by Bagley and Reuben is quite good. (ref 20)

In addition to using tune measurement as a coupling diagnostic, one can also tune direct-
ly on vertical beam size, depending on the quality of available beam size monitors (synchrotron
light, etc.). This is especially useful for on–the–fly tuning of colliding beam operations.

6.2 Dispersion and Chromaticity

An important aspect of any high energy storage ring is the dependence of its key parame-
ters on beam momentum.  Dispersion is a measure of the dependence of orbit on momentum, and
chromaticity relates how the betatron tunes vary with momentum.  To get a handle on either of
these, one must first have a convenient method of varying the beam momentum by a small
amount.  For a fixed magnet lattice, small changes in revolution period T are related to small
changes in momentum through the momentum compaction α:

�T
T

� �
�p
p

[16]

where p is the beam momentum.  Proton storage  ring  people should forgive the author for as-
suming relativistic beam momentum, ignoring the velocity–dependent term to be added to α.)
The momentum compaction is a lattice parameter relating how much orbit length increase is
associated with a small increase in beam momentum.  Finally, noting that a fractional change in
rf frequency frf changes the fractional revolution period an opposite amount, one arrives at the
following:
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Using a calculated value for α, one can change the beam momentum a known amount by
changing the rf frequency.

The dispersion function η(s) is defined according to

Xp(s) � �(s)
�p
p

[18]

where Xp(s) is the change in orbit around the machine when the momentum is changed an
amount ∆p.  To measure dispersion, one usually changes the rf frequency positive and negative,
taking the difference between orbits measured at the two extremes.  Knowing the amount of rf
frequency change and the momentum compaction, one can infer the dispersion.

Because most rings lie in a plane, dispersion is a horizontal effect.  Changes in vertical
orbit with momentum are usually associated with residual coupling or other lattice imperfec-
tions.  The primary reason for being interested in dispersion, from an operational standpoint,
comes into play when dispersion is discovered to be non–zero where it is not supposed to be.
For example, non–zero dispersion at the location of an rf cavity can lead to undesirable coupling
between transverse and longitudinal beam motion, the so–called synchrobetatron coupling.  In
addition, synchrotron light sources employing undulators and wigglers have as a constraint that
the dispersion function vanish within the insertion devices.  Otherwise, an unwanted increase in
beam emittance results.

The chromaticity is defined to be the change in tune with momentum:

�� � �
�p
p

[19]

For machines containing no nonlinear elements, the chromaticity is a negative number (natural
chromaticity) . This is because quadrupoles focus higher energy particles less than on–momen-
tum particles.  Introduction of sextupole magnets at dispersive points in the lattice allows one to
vary the chromaticity.  It is important to have slightly positive chromaticity in both x and y
planes to control the fast head–tail instability. (ref 16)

To measure ξ, one usually plots about five values of tune vs. rf frequency and extracts the
slope at the nominal operating frequency by fitting a polynomial.  This is necessary because the
tune is usually a highly nonlinear function of momentum.

6.3 Beta Function Measurement

6.3.1 Quadrupole Massage Technique

The standard beta function measurement technique for accelerators having independently
controllable quadrupole magnet power supplies is to measure the change in betatron tune caused
by varying the field strength of a single quadrupole.  The result of this measurement is propor-
tional to the beta function at the location of the quadrupole magnet which is being changed, (ref
17) according to

�� � – 1
4�

��k
[20]



where ∆k is the change in the integrated quadrupole field gradient.

A potential difficulty with this technique is that hysteresis effects result in a nonlinear
relation between the quadrupole current and the resulting magnetic field.  In addition, the beta
function is being measured at the location of the quadrupole magnet and not at the beam position
monitors.  Ultimately, the beta functions at the position monitors and correction dipoles are most
relevant for orbit feedback systems.  Finally, the measurement is complicated, involving about
100 power supplies, each of which must be varied in sequence.  The process is time consuming
and long time scale drifts in machine parameters, resulting from temperature variations, for ex-
ample, can pollute the measurement.

6.3.2 Closed–Orbit Difference Technique

This technique takes advantage of a well–known formula for the closed–orbit distortion
resulting from a change in a single steering element: (ref 17)

x � �x�c
�c��
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[21]

where β is the beta function at the beam position monitor where the beam motion x is observed,
∆ x�c is the angular deflection caused by the steering element, and βc is the beta function at the
steering element.  The quantities φ and φc  are the betatron phase at the beam position monitor
and the steering element, respectively, and µ=2πν is the betatron phase advance per turn in ra-
dians (ν = “the tune”).

Simply stated, the idea is to measure two perturbed orbits resulting from two different
steering elements located some odd multiple of π/2 in betatron phase away from each other.  If
one knows the values of βc and φc at these correctors, then one can extract both the beta function
and the betatron phase at all functioning beam position monitors.  Also, the tune must be mea-
sured.  This technique was proposed by Harrison and Peggs. (ref 21) Additionally, the beta func-
tion on the x–ray ring at NSLS was measured with reasonable success by Decker and Swenson
using a similar technique.

The advantages of the orbit difference technique are that the measurement is quick and is
limited only by the quality of the orbit measurement system and two steering corrector power
supplies.

One difficulty with this technique is that the βc’s and φc’s are unknown.  This can be re-
solved using a third closed–orbit measurement together with least squares fitting, but an ambigu-
ity of scale still remains.  Specifically, if βc is scaled up by a factor g, and all β’s are scaled down
by g, then formula [21] indicates that a consistent solution can still be found.  Also, nonlineari-
ties are again a problem, but this time resulting from deliberately placed magnetic elements –
sextupoles and octupoles.  If the orbit perturbations are made too large, then the beta functions
themselves will change as a result of nonlinear focusing.  On the other extreme, if orbit perturba-
tions are made too small, then one will obtain a very noisy measurement when trying to resolve
tiny orbit motions.  In addition to magnetic nonlinearities, one must contend with the inherent
nonlinearities of the position monitor pickup electrodes and processing electronics for large orbit
excursions.
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